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ABSTRACT Consumption of highly colored fruits and vegetables rich in anthocyanins has been associated with numerous

health benefits. Purple carrots (PC) and purple potatoes (PP) have higher anthocyanin concentrations and higher biological

activities compared with less pigmented cultivars. We hypothesized that substitution of the majority of carbohydrate in a high

fat diet with PP or PC, for 8 weeks, would improve insulin resistance and hypertension, major components of metabolic

syndrome, compared with orange carrots (OC), white potatoes (WP) or a control, high fat, sucrose-rich diet (HFD) in obese

Zucker rats. After 8 weeks of feeding, intraperitoneal glucose tolerance test, intraperitoneal insulin tolerance test (ipITT), and

invasive hemodynamic tests were performed. The PP group had better glucose tolerance compared with the WP and the HFD

groups and higher insulin sensitivity as measured by the ipITT and homeostatic model assessment of insulin resistance

(P = .018) compared with the HFD without having any effect on blood pressure. The PC reduced left ventricular pressure

compared with both the HFD (P = .01) and the OC (P = .049) groups and reduced systolic and diastolic blood pressures

compared with the HFD group (P = .01 and <.0001, respectively) without having any effect on glucose homeostasis. The PC

animals consumed more and were more obese than other groups, possibly obscuring any benefit of this vegetable on glucose

tolerance. The bioactives in the vegetables responsible for blood pressure and glucose homeostasis could be different, and

their effects could be independent of each other. The specific bioactives of each vegetable and their molecular targets remain

to be identified. Nonetheless, incorporation of purple vegetables in functional food products may provide metabolic/cardio-

vascular benefits in the background of a high-fat diet that promotes obesity.

KEYWORDS: � cardiovascular disease � diabetes � flavonoids � glucose tolerance test � high-fat diet � hypertension

� insulin resistance � overweight � polyphenols

INTRODUCTION

Metabolic syndrome (MetS) is a cluster of metabolic
risk factors (abdominal obesity, insulin resistance,

dyslipidemia, and hypertension) that is associated with an
increased risk of developing cardiovascular diseases (CVD)
and diabetes mellitus type II (T2D).1 MetS is a growing
global health problem. According to the International Dia-
betes Federation, about 25% of the adult population in the
world has MetS. In Canada, the prevalence of MetS was
recently estimated to be 19.1%2 and 18.3%.3

Epidemiologic evidence supports an inverse association
between consumption of diets rich in fruits and vegetables
and the prevalence of MetS.4 Plants often contain several
bioactive phytochemicals that have multiple biological ac-
tivities, giving them many mechanisms by which to delay or
reverse MetS associated pathologies.5

Anthocyanins are water soluble pigments that give fruits
and vegetables their red, blue, and purple colours6 and are
commonly found in the human diet.7,8 In several recent ani-
mal and human studies, anthocyanin-rich plants were shown
to positively modify MetS biomarkers. Whole tart cherry,9,10

purple corn,11 mulberry water extract,12 blueberry powder,13

bilberry extract,14 blood orange juice,15 blueberry beverage,16

strawberry beverage,17 black rice,18 black soy bean,19 and
anthocyanin supplementation20 were reported to decrease
and/or improve one or more of the metabolic risk factors such
as body weight, adipose tissue weight, dyslipidemia, hyper-
insulinemia, hyperglycemia, glucose intolerance, insulin re-
sistance, hepatic steatosis, and/or blood pressure. Several
mechanisms were suggested to explain these favorable effects
of anthocyanins on MetS. In these studies, anthocyanins were
mainly shown to modulate the expression of genes that reg-
ulate lipid metabolism, inflammation, and energy homeosta-
sis, all of which are thought to be critical to the pathogenesis
of obesity and insulin resistance.

The color in purple carrots is attributed to their high content of
anthocyanins.21,22 Purple carrot juice was shown to have higher
antioxidant, anti-inflammatory, and hypolipidemic effects
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compared with beta-carotene in high-carbohydrate high-fat
diet-fed rats.23 Higher concentrations of antioxidants in purple
potato cultivars compared with white potato cultivars are
mainly attributed to their anthocyanin content.24 Purple potatoes
were shown to have antiobesity and hypolipidemic effects in
high-fat diet-fed rats25 and antioxidative and anti-inflammatory
effects in men.26

Given the reported favorable effects of anthocyanin-rich
plants on MetS, the high concentration of anthocyanins in
purple carrots and purple potatoes and their reported higher
biological activity compared with their less pigmented
counterparts, we hypothesize that (1) the substitution of the
majority of carbohydrate in a high-fat diet, with purple carrots
or purple potatoes, for 8 weeks, would improve insulin re-
sistance and hypertension, (2) more highly colored varieties
would be superior to lighter cultivars, and (3) all vegetable
diets would perform better than the typical sucrose-rich, high-
fat diet known to produce the MetS in animals.

MATERIALS AND METHODS

Experimental design

Seventy-five obese susceptible Zucker male rats were ob-
tained from Charles River Laboratories at 4 weeks of age and
housed, two rats per cage, at 23�C – 3�C under an automatic
lighting schedule (08.00–20.00 h light). They were acclimated
on regular chow for 1 week and then randomized to five ex-
perimental diets (15 rats/group): control (high-fat diet, HFD),
white potato-supplemented high-fat diet (WP), orange carrot-
supplemented high-fat diet (OC), purple potato-supplemented
high-fat diet (PP), or purple carrot-supplemented high-fat diet
(PC) for 8 weeks. The five experimental diets were prepared
by Research Diets, Inc. (New Brunswick, NJ, USA), using a
modified high-fat AIN-93M diet as the base. Each diet was the
same except for the type of carbohydrates. The control group
had sucrose, whereas the other four groups had one of each
vegetable, as the main sources of carbohydrates. The compo-
sition of the pelleted experimental diets is shown in Table 1.
Body weight and food intake were measured twice a week
throughout the study. This protocol was approved by the
Animal Care Committee of the University of Guelph (Animal
Utilization Protocol #12R012) in accordance with the guide-
lines from the Canadian Council on Animal Care (CCAC).

Quantification of phenolic and carotenoid content
of the experimental vegetables

Polyphenol and carotenoid extracts were prepared from
freeze-dried vegetable powder as previously described.27

Total phenolic content was determined using Folin–
Ciocalteu’s phenol reagent method and expressed as milli-
gram gallic acid equivalent per gram dry weight.27 Total
anthocyanin content was quantified using the pH differential
method and expressed as milligram cyanide-3-glucoside
equivalent per gram dry weight.27 Total flavonoid and ca-
rotenoid contents were also estimated28,29 and expressed as
milligram catechin equivalent and microgram b carotene
equivalent per gram dry weight, respectively (Table 2).

Glucose tolerance test

After 8 weeks of feeding, an intraperitoneal glucose tol-
erance test (ipGTT) was performed on overnight fasted rats.
The glucose level was measured from the whole tail blood at
0, 10, 20, 30, 60, 90, and 120 min following the ip injection
of 40% glucose solution (2 g/kg BW), using a glucometer.30

Glucose area under the curve (AUC) above the baseline
measurement was calculated using these values.31

Insulin tolerance test

Three days after the ipGTT, blood glucose measures were
obtained from the tail at 0, 5, 10, 15, 30, and 45 min fol-
lowing ip injection of human insulin (1 U/kg BW).13 The
values obtained were used to calculate glucose area above
the curve (AAC) that is below the baseline measurement.31

Table 1. Composition of the Experimental Diets

Component in g/kg diet Control WP PP OC PC

Casein (protein) 140 140 140 140 140
l-Cystine 1.8 1.8 1.8 1.8 1.8
Lard 120 120 120 120 120
Soybean oil 40 40 40 40 40
Maltodextrin 10 150 150 150 150 150
Sucrose 450 — — 150 150
Freeze-dried baked white potato — 450 — — —
Freeze-dried baked purple potato — — 450 — —
Freeze-dried raw orange carrot — — — 300 —
Freeze-dried raw purple carrot — — — — 300
Cellulose, BW200 50 50 50 50 50
Vitamin Mix v10037 10 10 10 10 10
Mineral Mix s10022M 35 35 35 35 35
Choline bitartrate 2.5 2.5 2.5 2.5 2.5

WP, high-fat diet supplemented with white potatoes; PP, high-fat diet

supplemented with purple potatoes; OC, high-fat diet supplemented with

orange carrots; PC, high-fat diet supplemented with purple carrots.

Table 2. Total Phenolic, Flavonoid, Anthocyanin,

and Carotenoid Contents of the Experimental Vegetables

Vegetable TPC1 TFC2 TAC3 TCC4

White potatoes 2.38 – 0.02a 0.43 – 0.07a — 1.02 – 0.27a

Purple potatoes 5.2 – 0.01b 2.08 – 0.14b 1.47 – 0.06a 2.87 – 0.33a

Orange carrots 1.6 – 0.03c 0.57 – 0.06a — 52.9 – 6.25b

Purple carrots 9.92 – 0.42d 5.27 – 0.16c 3.35 – 0.22b 145.03 – 6.25c

Values are means – SD, n = 3. Means within a column not sharing a letter

are significantly different, P < .05.
1Values are expressed as milligram gallic acid equivalent per gram of dry

weight (mg GAE/g DW).
2Values are expressed as milligram catechin equivalent per gram of dry

weight.
3Values are expressed as milligram cyanidin-3-glucoside equivalent per

gram of dry weight (mg C3G/g DW).
4Values are expressed as microgram b carotene equivalent per gram of dry

weight.

TAC, total anthocyanin content; TCC, total carotenoid content; TFC, total

flavonoid content; TPC, total phenolic content.
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Plasma insulin levels

Blood samples were obtained by cardiac puncture on
anesthetized rats after hemodynamic measurements were
taken (see Hemodynamic function). Fasting plasma insulin
levels were determined by enzyme-linked immunosorbent
assay (ELISA) using a commercial assay kit (Rat insulin
ELISA kit; EMD Millipore, USA).

Homeostatic model assessment of insulin resistance

The following formula was used to calculate HOMA IR:
fasting plasma glucose (mmol/L) · fasting plasma insulin
(mIU/L)/22.5.32

Hemodynamic function

The rats were anesthetized with an isoflurane/oxygen mix
(2.25%/100%) and maintained at 37�C throughout the pro-
cedure. A 1.2F catheter (FTS-1211B-0018; Scisense, Inc.)
was inserted through the right carotid artery and into the left
ventricle. Blood pressure readings were digitized at a sam-
pling rate of 2000 Hz and recorded by computer using
iWorx� analytic software (Labscribe2, Dover, NH, USA).
Values were obtained during a period of *5 min of stable
function and averaged from a 10 sec sample.

Western blotting

Liver and adipose tissue samples were homogenized (Fast
Prep�24; MP Biomedical, Santa Ana, CA) using NP40 cell
lysis buffer (Invitrogen, CA) (3 volumes for adipose and 30
volumes for liver samples) supplemented with protease in-
hibitor cocktail and phenylmethylsulfonyl fluoride (Sigma-
Aldrich). The lysates were centrifuged at 5000 g for 10 min
at 4�C.33,34 Total protein content of the infranatant was
determined using BCA Protein Assay Kit (Thermo Fisher
Scientific). Twenty micrograms protein samples were sep-
arated on 4–10% gradient sodium dodecyl sulfate poly-
acrylamide gel electrophoresis (SDS-PAGE) gels and then
transferred onto a nitrocellulose membrane using a wet
transfer technique at 100 V for 1 h. Membranes were
blocked with 5% BSA in 0.05% TBST for 1 h and then
incubated with the appropriate primary antibody overnight
at 4�C. The membranes were washed several times with
TBST and then incubated with the appropriate horseradish
perioxidase-conjugated secondary antibody for 1 h at room
temperature. The signals were visualized using enhanced
chemiluminescence. Densitometry was used for band
quantification using Alpha View software of the FluorChem
HD imaging system (Alpha Innotech, Santa Clara, CA).
Phosphorylated proteins were normalized to the correspond-
ing total. All other proteins were normalized to GAPDH. Pri-
mary antibodies were from Cell Signaling. ACC (#3676),
phospho ACC (#11818), AMPK alpha (#5831), phospho
AMPK alpha (#2535), AMPK beta (#4150), phospho AMPK
beta (#4181), adiponectin (#2789), fatty acid synthase (FAS)
(#3180), peroxisome proliferator-activated receptor gamma
(PPAR gamma) (#2435), perillipin (#9349), and secondary
antirabbit (#7074).

Statistical analysis

Data were analyzed using the PROC MIXED of SAS 9.4
software.35 Two-tailed t-tests on all pairs (i.e., pairwise
contrast) after analysis of variance (ANOVA) were used.
ipGTT and intraperitoneal insulin tolerance test (ipITT) data
were analyzed using repeated measures ANOVA. The dif-
ferences among the means with P-values £.05 were con-
sidered significant.

RESULTS

Food intake and body weight gain

Rats fed the WP diet had significantly higher body weight
gain (P = .04) and higher food intake (P < .0001) compared
with the rats fed the PP or control HFD diets (Table 3). Both
carrot groups ate more (P = .0005) and had higher body
weights (P = .001) than the HFD group, but there were no
differences between cultivars (Table 4).

Blood glucose levels during ipGTT

Blood glucose concentrations of the PP group were not
significantly different from those of the WP or the HFD
group at min 0, 10, 20, and 30 during the ipGTT. However,
at 60 min, glucose levels of the PP group were significantly
lower than the WP group (P = .049) and at the last two time
points of the test, 90 and 120 min, the PP group had sig-
nificantly lower blood glucose concentrations compared
with both the HFD and the WP groups (at min 90, P = .009
and P = .0066, at min 120, P < .0001 and P = .04, respec-
tively) (Fig. 1A). The PP group had numerically smaller
AUC compared with both the HFD and the WP groups, but
it did not reach significance (P = .089) (Fig. 2A).

There were no differences in the blood glucose levels
between the PC group and the HFD or the OC groups at any
time point of the test (Fig. 1B). Also, there were no differ-
ences in glucose AUC among the three groups (Fig. 2B).

Blood glucose levels during ipITT

Blood glucose concentrations of the PP group were not
significantly different from that of the WP or the HFD group
at min 0, 5, 10, and 15 during the ipITT. However, at 30 and
45 min, the PP group showed significantly lower blood
glucose concentrations compared with the HFD group

Table 3. Body Weight Gain and Daily Food Intake

of Rats Fed HFD, WP, and PP for 8 Weeks

Diet Body weight gain, g Food intake per day, g

HFD 392.0 – 10.8b 28.3 – 0.5b

WP 435.2 – 10.8a 30.7 – 0.5a

PP 403.8 – 10.4b 27.5 – 0.5b

Values are least square means – standard errors, n = 14–15. Means within

column not sharing a letter are significantly different. P < .05.

HFD, high-fat diet; PP, purple potato-supplemented high-fat diet; WP,

white potato-supplemented high-fat diet.
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(P = .02 and P = .006, respectively) and the WP group was
also significantly lower than the HFD at 45 min postinsulin
injection (Fig. 3A). Glucose AAC did not significantly differ
among the three groups (Fig. 4A).

There were no significant differences in the blood glucose
levels of the PC group compared with the HFD or the OC
groups at any time point of the test (Fig. 3B), nor were there
differences in glucose AAC among the HFD or either carrot
cultivar group (Fig. 4B).

Plasma insulin levels

Rats fed both potato cultivars had significantly lower
fasting plasma insulin levels compared with the HFD group
(Fig. 5A). For the carrot cultivars, the trend was similar, in
that the more highly colored variety appeared to have lower
insulin values than the more highly colored and both carrot
cultivars were lower than the HFD, however, this did not
reach statistical significance (Fig. 5C).

Homeostatic model assessment of insulin resistance

The PP group had significantly lower HOMA IR values
compared with the HFD group (P = .018) (Fig. 5B). For the
WP, the HOMA IR was intermediate between the HFD and

Table 4. Body Weight Gain and Daily Food Intake

of Rats Fed HFD, OC, and PC for 8 Weeks

Diet Body weight gain, g Food intake per day, g

HFD 392.0 – 12.0b 28.3 – 0.6b

OC 436.1 – 11.6a 30.3 – 0.6a

PC 449.3 – 11.6a 31.6 – 0.6a

Values are least square means – standard errors, n = 14–15. Means within a

column not sharing a letter are significantly different, P < .05.

OC, orange carrot-supplemented high-fat diet; PC, purple carrot-

supplemented high-fat diet.

FIG. 1. Changes in blood glucose levels during GTT of rats: fed
(A) HFD, WP, and PP (B) HFD, OC, and PC for 8 weeks. n = 14–15.
Values are means – SE. Means within each time point not sharing a
letter are significantly different. P < .05. GTT, glucose tolerance test;
HFD, high-fat diet; OC, orange carrot-supplemented high-fat diet;
PC, purple carrot-supplemented high-fat diet; PP, purple potato-
supplemented high-fat diet; SE, standard error; WP, white potato-
supplemented high-fat diet.

FIG. 2. Total plasma glucose concentration during GTT expressed
by glucose AUC of rats fed (A) HFD, WP and PP (B) HFD, OC and
PC for 8 weeks. n = 14–15. Values are means – SE. None of the dif-
ferences was significant, P ‡ .05. AUC, area under the curve.
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PP groups and not significantly different from either. For the
carrots, again the trends were similar to the potatoes, but
again these differences were not statistically significant
(Fig. 5D).

Blood pressure measurements

The systolic and diastolic blood pressures of the
WP group were significantly lower than the HFD. In
this case, the PP pressures were intermediate between

the WP and HFD groups and not statistically different
from either (Fig. 6A). In contrast to the results of
absolute blood pressures, the PP had significantly
lower arterialvenous (AV) differences than that of the
HFD (P = .02) and the WP group was intermediate and
not different from HFD or PP (Fig. 6B). Left ven-
tricular pressure (LVP) was not significantly different
among the three groups (Fig. 6A).

In the carrot arms of the study, the group fed PC dem-
onstrated significantly lower systolic, diastolic, and peak
LVP compared with the HFD group (P = .01, <.0001 and
.01, respectively). For the OC group, the reduction in sys-
tolic blood pressure was not as large as for the PC and not
significantly different from either the HFD or PC groups.
However, for diastolic blood pressure, the reduction was
more marked and resulted in a significantly lower blood
pressure than the HFD that was similar to the PC (Fig. 6C).
Again, although the AV differences appeared lower for both
carrot groups compared with the HFD, this too did not reach
statistical significance (Fig. 6D).

FIG. 3. Changes in blood glucose levels during ITT of rats fed (A)
HFD, WP, and PP (B) HFD, OC, and PC for 8 weeks. n = 14–15.
Values are means – SE. Means within each time point not sharing a
letter are significantly different. P < .05. ITT, insulin tolerance test.

FIG. 4. Plasma glucose disposal during ITT expressed by glucose
AAC of rats fed (A) HFD, WP, and PP (B) HFD, OC, and PC for 8
weeks. n = 14–15. Values are means – SE. None of the differences
was significant, P ‡ .05. AAC, area above the curve.
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Organs weight

Organs weights, expressed as a percentage of body
weight, were compared between the groups (Fig. 7). All
vegetable groups had significantly lower liver weights than
the HFD, however, the light and highly colored cultivars

behaved equally well. All other organs weights did not differ
among groups.

Protein expression

No significant differences were seen among the carrot or
the potato groups in the expression of the studied proteins in
either the adipose or the liver tissues (Figs. 8 and 9).

DISCUSSION

The purpose of this study was to examine the potential
benefits of substituting vegetables for sucrose in a high-fat
diet that produces profound obesity and MetS in susceptible

FIG. 5. Fasting insulin levels (ng/mL) and HOMA IR of rats fed
(A, B) HFD, WP, and PP (C, D) HFD, OC, and PC for 8 weeks.
n = 7–8. Values are means – SE. Bars not sharing a letter are signifi-
cantly different. P £ .05. HOMA IR, homeostatic model assessment of
insulin resistance.

FIG. 6. Systolic, diastolic, left ventricular pressures, and AV dif-
ference of rats fed (A, B) HFD, WP, and PP (C, D) HFD, OC, and PC
for 8 weeks. n = 9–14. Values are means – SE. Bars not sharing a
letter are significantly different, P £ .05.
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animals. Obese Zucker rats develop obesity rapidly, even on
a moderate diet, and quickly develop hypertension and
symptoms of T2D. In this study, we showed that substituting
purple or white potatoes for sucrose as the major source of
carbohydrate, improved glucose tolerance, with purple po-
tatoes being superior to white potatoes. Comparing the im-
paired glucose tolerance among the groups can be done by
either using ‘‘the time course of the blood glucose mea-
surements’’ or the glucose AUC.36 In our study, we used
both ways to express ipGTT and ipITT results. During
ipGTT, blood glucose levels of the PP group were signifi-
cantly lower at the last two time points of the test, while
lower only at the last time point for the WP, compared with
the HFD group. This indicated that the glucose clearance
from the circulation was faster with the PP compared with

the other two groups. Glucose tolerance is a reflection of two
factors: (1) insulin sensitivity of the target tissues and (2)
insulin secretion from the pancreatic b cells in response to
glucose.36 Therefore, the ipGTT does not determine the
underlying mechanisms for the observed changes in the
glucose tolerance (i.e., the causative mechanism can be
changes in insulin sensitivity, insulin secretion, or a com-
bination of both). In our experiment, we did not measure
insulin levels at each time point during the ipGTT, so we are
unable to discriminate between these possibilities. The
lower glucose tolerance of the WP, compared with the PP
could be due to impaired insulin secretion rather than im-
paired insulin sensitivity. However, impaired pancreatic
function is typically seen as a late event in this pathologic
condition that occurs after the pancreas gets exhausted try-
ing to compensate for insulin resistance.37 These animals
were still relatively young and so pancreatic exhaustion
seems unlikely.

We also used fasting plasma insulin levels and HOMA
IR to assess insulin resistance. HOMA IR is an accepted,
reliable, surrogate measure of insulin resistance in ro-
dents38 that correlates well with results from the hyper-
insulinemic euglycemic clamp.39 According to both
assays, the PP group were more insulin sensitive compared
with the control group, and this is also consistent with the
findings of the ipITT. However, having impaired glucose
tolerance can make the use of the fasting sample indices

FIG. 7. Organ weights’ percentage of the body weight of rats fed
(A) HFD, WP, and PP (B) HFD, OC, and PC for 8 weeks. n = 14–15.
Values are means – SE. Bars within a given tissue, not sharing a letter
are significantly different, P £ .05.

FIG. 8. Expression of the proteins of interest in the adipose tissue
in rats fed (A) control, WP, and PP diets (B) HFD, OC, and PC for 8
weeks. n = 7. Values are means – SE. Proteins are expressed relative
to the corresponding total or GAPDH. None of the differences was
significant, P ‡ .05.
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less reliable.40,41 Fasting plasma insulin levels will not
mirror the degree of insulin resistance if there is defective
insulin secretion. In subjects with impaired glucose toler-
ance or T2D, fasting insulin was not an accurate indicator
of insulin resistance.42 This means that we are unable to
conclude that the insulin sensitivity of the WP group did
not truly differ from that of the PP since the WP group had
poorer glucose tolerance than the PP according to the
ipGTT results. This finding is in agreement with several
studies that reported an insulin sensitizing effect of other
anthocyanin-rich plants.9–11,13,14,18

In contrast to the potatoes, carrots substituted for sucrose
in a high-fat diet did not exert a statistically significant
positive effect on glucose homeostasis or insulin sensitivity,
although the trends were very similar for carrots and pota-
toes. The effect of obesity on insulin resistance could be the
explanation for the lack of a positive effect on insulin re-
sistance with the carrot groups. The PC group had signifi-
cantly higher food intake and body weight gain compared
with the HFD group (i.e., they ate more and were more
obese, Table 4). The additional obesity could have coun-

teracted any possible benefit of carrots on glucose homeo-
stasis. This hypothesis is further supported by the potato
arms of the study. WP was less effective at improving glu-
cose tolerance than PP and the WP group, just like the
carrots, also had higher food intake and body weight gain
over the course of the study (Table 3).

High blood pressure is one of the major components of
MetS and a significant risk factor for the development of
CVD.1,43 In a recent SPRINT study, lowering blood pressure
in nondiabetic, high-risk CVD patients reduced major CVD
events and overall mortality.44 Obesity and insulin resistance
are recognized as the main factors contributing to the de-
velopment of hypertension in MetS by inducing endothelial
dysfunction, sympathetic nervous and renin–angiotensin
system over activity, as well as high levels of inflammatory
cytokines.45–47 In our study, despite the lack of a significant
positive effect of the PC on insulin variables, PC did show
significantly lower LVP compared with both the HFD and the
OC groups and lower systolic and diastolic pressure than the
HFD group. The OC group did have improvements in dia-
stolic blood pressure that were similar to PC, but the effects
on systolic blood pressure and LV pressure were less obvious
than for the PC. A selective improvement of blood pressure
without affecting insulin sensitivity was previously reported
with blueberry beverage supplementation in obese humans.16

Despite the marked obesity and insulin resistance, PC were
still able to reduce blood pressure. This means that lowering
blood pressure can be achieved independently from processes
that impact insulin resistance. Although in our study, the
underlying mechanism is still unknown, in other in vitro and
ex vivo studies, anthocyanins increased NO synthase levels in
both human and bovine cells while decreasing endothelin 1
production.48,49 Also, blueberry diets decreased the vaso-
constrictor response in the aortic rings of rats via a NO
synthase-dependent mechanism.50

Unlike the significant favorable effect on glucose toler-
ance, The PP diet did not affect blood pressure as dramati-
cally as the WP. In fact, it was intermediate between the
HFD and WP groups. This suggests that the bioactives re-
sponsible for improvements in glucose homeostasis may be
different from those that affect hemodynamic parameters.
Clearly anthocyanins are not the only important phyto-
chemicals in these vegetables. It is worth mentioning that
the reduction of the AV difference by the PP could be a sign
of healthier aortic valves. Aortic valve stenosis or calcifi-
cation results in LVP overload and a high pressure gradient
across the valve.51

Both purple vegetables and their lightly colored coun-
terparts significantly decreased liver weight compared with
the HFD. This could be a sign of normalizing the hepatic
enlargement induced by fat deposition. Fatty liver or hepatic
steatosis is a condition that is positively correlated with
obesity and MetS.52 An improvement in hepatic steatosis,
inflammation, and enzyme activity was reported with tart
cherries10 and purple carrot juice23 in animal studies. We did
not histologically examine the livers to examine lipid de-
position or other evidence of steatosis, although this would
be something interesting to do in the future.

FIG. 9. Expression of the proteins of interest in the liver tissue in
rats fed (A) control, WP, and PP diets (B) HFD, OC, and PC for 8
weeks. n = 7. Values are means – SE. Proteins are expressed relative
to the corresponding total or GAPDH. None of the differences was
significant, P ‡ .05.
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To begin an investigation of possible mechanisms for the
observed effects on glucose homeostasis and blood pressure,
we chose a few candidate genes to explore. These included
proteins known to affect lipid homeostasis and inflamma-
tion; for example, PPAR gamma, adiponectin, perillipin,
FAS, phosphorylated Acetyl-CoA carboxylase (phosphor
ACC), and phosphorylated AMP-activated protein kinase
(phospho AMPK). PPAR gamma is a master regulator of
lipid metabolism that promotes adipocyte differentiation
and the fat storage ability of the adipose tissue, thereby
enhancing insulin sensitivity.53 Adiponectin is an anti-
inflammatory adipose derived cytokine that also has insulin
sensitizing effects,54 whereas ACC is a key enzyme in fatty
acid synthesis. Its phosphorylation (i.e., inactivation) by
phospho AMPK increases fatty acid oxidation by affecting
carnitine palmitoyltransferase I (CPT1) activity.55,56 How-
ever, none of the studied proteins expression was modulated
by the experimental vegetables. This probably means that
the vegetables, in our experiment, exerted the observed ef-
fects through other mechanisms that still need to be ex-
plored. We are currently undertaking a proteomic analysis to
examine potential mechanisms further.

In conclusion, feeding diets containing white or purple
potatoes as replacements for sucrose (simple sugars) can re-
duce the severity of risk factors associated with MetS in an
animal model. Both potato cultivars improved blood pressure
and improved glucose tolerance with the purple potatoes
being slightly better at improving glucose tolerance and the
white potatoes were better at improving hemodynamic vari-
ables. On the contrary, carrots as substitutes for sucrose have
lesser effects on glucose tolerance while retaining the benefits
of vegetable consumption on blood pressure. The reduced
benefit of white potatoes on glucose tolerance compared with
purple potatoes could be an effect of anthocyanins (Table 2)
(higher in purple cultivar) or a result of the higher obesity in
WP compared with PP fed animals. The lack of benefit of
carrots on glucose tolerance is most likely confounded by
their significantly higher obesity than either HFD or potato
fed animals. In contrast to the possible role of anthocyanins in
glucose regulation, they are unlikely to be the bioactives in
these vegetables responsible for the blood pressure lowering
activity of both vegetable types and both high and low an-
thocyanin varieties. The examination of total phenolic, fla-
vonoid, anthocyanin, and carotenoid content do not point to
any particular class of compound and thus a more thorough
characterization of the individual species and their bioactiv-
ities will be necessary to identify the critical bioactives. It is
also highly likely that the compounds are acting in additive or
synergistic ways that cannot be achieved by feeding purified
compounds or extracts. Nonetheless, our study supports the
inclusion of whole cooked potatoes or raw carrots in the
human diet as part of a strategy to decrease obesity-related
disorders, including hypertension and T2D.
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